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1 Introduction

This deliverable describes the initial software structure developed in tasks T4.1 and T4.3
to perform pick and place actions with the Franka Emika Panda arm installed on the
DARKO platform. The contribution to this purpose can be divided into 3 main parts: 1) a
Movelt-based package to exploit the existing open-source code for motion planning; 2)
a set of torque controllers for the robot arm to provide a lower level interface; and 3) a
software package to plan Human-Like motion. All the packages described below were
designed for ROS Melodic Morenia (the version actually in use on the DARKO platform),
but they can be ported easily on the latest ROS 1 distribution (Noetic Ninjemys).

In the last part of the deliverable, in anticipation of the development of an elastic arm
for the platform, we introduced some preliminary work regarding the planning and control
of compliant manipulators.

2 Movelt Package for Motion Planning

Movelt is a software package commonly used for motion planning for robotic manipulators.
It has an architecture which provides a set of tools necessary to solve planning problems
(such as inverse kinematics, collision detection and planning algorithm) and permits the
user to command his robot both using C++/Python packages or through a graphical
interface.

In this section, we will focus on the explanation of the software architecture developed
inside the project DARKO, while for more general information regarding the Movelt
package we refer the reader to [8,24].

2.1 Package Description

All the code regarding motion planning and control with Movelt described in this section
can be found in the GitLab repo reported below:

darko_arm_planning:

type: git;

url: https://gitsvn-nt.oru.se/darko/software/darko_arm_planning.git
version: master-unipi

The main ROS node responsible for motion planning and control is called "hl_sequencer".
This node is created by instantiating an object belonging to the "human_like" class, declared
as a C++ library within the "darko_arm_planning" ROS package. The class’s constructor
creates and initializes publishers and subscribers to receive and publish messages to
compute the motion planning and control phase for the Franka Emika robot. The basic
idea besides the node is to listen to the five types of tasks:

* Pick: Plan a Cartesian trajectory using Movelt and, at the end of the motion, close
the gripper.

* Place: Plan a Cartesian trajectory using Movelt and, at the end of the motion, open
the gripper.

* Throw: Trigger the throwing part of the algorithm (described in D4.5).

* Move: Plan a Cartesian trajectory using the Human-like motion planning strategy
described in Section 4.
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* Tool: Trigger the motion sequence to perform pick and shoot with the pneumatic
tool (described in D1.2 and D4.5)

Combining these tasks it is possible to perform more complex tasks such as picking and
placing/throwing of a desired object in the desired position. This specific set of basic tasks
is the one used for the demonstration performed during Milestone 2. However, tasks can
be easily modified and/or added to integrate the new approaches developed until the end
of the project.

A detailed description of the ROS topics, publishers and subscribers is reported here:

* "/manipulation/action_type": it is the subscriber’s topic used by the ROS node
"hl_sequencer" to get the type of tasks listed above. The topic’s type is a std_msgs/String
message.

* "/manipulation/MovingPose": it is the subscriber’s topic used by the ROS node
"hl_sequencer" to get the desired cartesian pose used by the human-like trajectory
planning. The topic’s type is a geometry msgs/PoseStamped message.

* "[robot/arm/cartesian_impedance_controller_softbots/equilibrium_pose": it is
the publisher’s topic used by the ROS node "hl sequencer" to publish the planned
trajectory towards the goal pose received on the "/manipulation/MovingPose"
topic. The topic’s type is a geometry msgs/PoseStamped message.

* "/manipulation/desired_ee_pose": it is the subscriber’s topic used by the ROS
node "hl_sequencer" to get the desired grasp pose set as pose target in the Movelt
trajectory planning. The topic’s type is geometry msgs/PoseStamped message.

* "/robot/arm/position_joint_trajectory_controller/follow_joint_trajectory": it
the ROS action’s topic used by the ROS node "hl_sequencer" to publish the Movelt
planned trajectory towards the goal pose received on the "/manipulation/de-
sired_ee_pose" topic. The topic’s type is a trajectory_msgs /JointTrajectory.

The ROS node "hl_sequencer" can be run using the launch file called "launchHuman-
Like.launch" contained in the folder "launch".

It is worth mentioning that the "hl_sequencer" ROS node can handle all the grippers
used in the DARKO EU project: the DH3 gripper, the SoftHand 1 and the SoftHand 2. To
do this, we can select what type of gripper we are using by simply modifying the input
argument from the launch file ("launchHumanLike.launch").

3 Controller Packages for Franka Emika Panda

This section describes the controllers deployed on the DARKO platform to control Franka
Emika Panda’s arm.

3.1 Theorethical Framework

One of the significant advantages of Franka Emika Panda is the capability to accept torque
commands, enabling the possibility to implement arbitrary controllers to follow different
behaviours. Exploiting this possibility, we developed a set of impedance controllers to
command the manipulator. The impedance behaviour is fundamental for a robot that has
to interact physically with the environment in a safe and proficient manner. This class
of controllers permits to avoid large impact forces while operating in an unstructured
environment. To meet the needs of all partners of the consortium we implemented two
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different controllers: 1) a Cartesian impedance controller and 2) a classical Computed
Torque controller. This choice was made to be able to accept reference trajectories both in
the joint space and in the task space.

3.1.1 Cartesian Impedance Controller

A Cartesian impedance controller is a type of robot controller that regulates the interaction
between a robot and its environment by controlling the impedance of the robot’s end-
effector in Cartesian space. Given a desired Cartesian trajectory x,,, and its time derivative
X 4.5, We can define the error between the actual and desired Cartesian position and the
velocity of the manipulator as e = x,,, —x and é = x4,, — X. From these values, we can
compute the joint torque necessary to follow the desired trajectory:

7 =J"(q)(Kye +K,é)+G(q) +C(q,9)q (D

where J(q) is the Jacobian, G(q) is the gravitational term, C(q)q is the Coriolis term and
K, and K, are the matrices that define the impedance behaviour of the controller.
Usually, when we use manipulators with more than 6 degrees of freedom, an additional
control law projected in the null of the Cartesian space is introduced to control the
redundancy of the robotic arm. In our case we decided, as a secondary task, to maintain a
fixed desired joint posture. To do this we defined the secondary torque command 7,,;; as:

Tnull = P(q)(Kpnull(qdes - (I) _Kvnullq) 2

where P(q) = (I—JT(J™)T) is the Cartesian null space projector and J* is the pseudoinverse
of J.

3.1.2 Computed Torque Controller

Computed Torque Control is a type of feedback control technique used in robotics and
mechatronics applications. The aim of this control method is to control the motion of
a robot or a mechatronic system with high precision, while also reducing the effect of
external disturbances on the system. It comprises two main terms: the feedforward part,
responsible for generating a desired torque based on the current system state and the
desired trajectory, and the feedback part, responsible for making the motion stable. The
torque to perform this type of control can be computed with the following equation:

T = M(q)(Gges + K €+ Kpe) + C(q,q)q + G(q) ®))

where G 4., 440, and qq.; are the desired joints acceleration, velocity and trajectory, e =
des — 4 and e = qdes _q

3.2 Software Package

All the code regarding the controller used in the Franka Emika Panda arm is contained in
the DARKO project GitLab repository called "darko_arm_control".

darko_arm_control:

type: git;

url: https://gitsvn-nt.oru.se/darko/software/darko_arm_control.git
version: master-unipi

Both the Cartesian Impedance and Computed Torque controller can be loaded and
spawned through the controller manager node recalled in the launch file called "manipula-
tion_complete.launch" inside the "darko_launch_system" folder.
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darko_launch_system:

type: git;

url: https://gitsvn-nt.oru.se/darko/software/darko_launch_system.git
version: master

3.2.1 Cartesian Impedance Controller

To implement this controller on the DARKO platform we used the standard code structure
provided by Franka to develop a ROS node to send torque commands to the robot joints.
This node is written in C++ and it provides different topics to communicate with other
nodes:

Ul

* "/robot/arm/cartesian_impedance_controller_softbots/equilibrium_pose_pose":
it is a subscriber used by the node to get the desired end-effector pose x4,, to be
used to compute the torque in (1). This subscriber accepts a geometry msgs/Pose
message.

* "/robot/arm/cartesian_impedance_controller_softbots/desired_stiffness": it is
a subscriber used to set online the parameters K, and K, in (1). This subscriber
accepts a geometry_msgs/Vector3 which represents the stiffness values for translation
along axes x, y and z. The rotational stiffness is set as translational stiffness divided
by 10. The diagonal values of the damping matrix K, instead are set to ensure that
the controller behaves as a critically damped system.

* "/robot/arm/franka_state controller/franka_states": it is a publisher used by the
controller to retrieve the actual end-effector pose as a geometry msgs/PoseStamped.

3.3 Computed Torque Controller

To implement this controller on the DARKO platform we used the standard code structure
provided by Franka to develop a ROS node to send torque commands to the robot joints.
This node is written in C++ and it provides the following topics:

* "/robot/arm/computed_torque_controller/command": it is a subscriber used by
the node to get the desired joint references in terms of position (qg4,;), velocity (qq.,)
and acceleration (§g4,,)- This subscriber accepts a sensor_msgs/JointState message.

* "/robot/arm/computed_torque_controller/tracking error": it is a publisher used
by the controller to make available to the other nodes the actual tracking error
performed by the controller. It uses a ROS message of type sensor_msgs /JointState.

4 Human-Like Motion Planning Algorithm

4.1 State of the Art

Generating Human-Like (HL) movement with robotic manipulators is crucial because it
can enhance safety, interaction, versatility, efficiency, and user experience. When robots
move like humans, they are more predictable and safe to operate around humans. This
reduces the risk of injury and allows for better communication and understanding between
humans and robots.

Human motion has different key features which make it peculiar with respect to
movements generated by classical planning algorithms. For example, in [10] the authors
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analyzed human hand motion in 3D space during reaching tasks, with and without ob-
stacles, finding that the movement paths are predominantly planar. In [14], the authors
found that there is a relation between the curvature of a path and the velocity at which
humans have to follow it. In [9] the authors observed that humans minimize jerk during
movement execution.

Many researchers proposed strategies for generating Human-Like movements in differ-
ent applications [11,17]. One of the most popular solutions to achieve HL is to formalize
an optimization problem whose functional cost is devised from neuroscientific observa-
tions. For example, in [18] the authors developed an optimization-based framework to
generate minimum-jerk trajectories building on [9], while [12] exploited the minimization
of the torque-change following the model proposed in [25]. However, such optimization
approaches usually build upon hypotheses on motion generation, which can reduce the
variability of the planned movement.

Another possible approach to generate Human-Like movements exploits learning and
data-driven methods. This is a solution used very often in the field of animations and
computer graphics where, after an extensive campaign of data recording via motion
capture systems, the recorded datasets are used to train neural networks to animate the
avatars [13,16,27]. For example, in [15] the authors used a recurrent neural network
to act as a near-optimal feedback controller generating stable and realistic behaviour.
Another example is [21], where the authors used Generative Adversarial Neural Networks
for synthesizing gestures directly from speech. Some of these approaches are also applied
in robotic applications for the generation of human-like movements with humanoid robots
[23]. However, the common limitation of learning-based methods is related to the need
for reliable datasets, whose dimensionality can be significant.

A possible solution to design an efficient Human-Like motion planning framework,
overcoming the aforementioned issues, is to directly embed the main human motion
characteristics in the algorithmic structure. Many works in literature addressed the analysis
of human motion to extract movement patterns and obtain a reduced yet meaningful
characterization of human kinematics [22]. Regarding the upper limb motion, in [3] we
exploited functional Principal Component Analysis (fPCA) to identify a geometrical basis of
functions whose elements can be combined to reconstruct the overall trajectory. These basis
elements were also used to develop a planning algorithm in the joint space domain, which
intrinsically embeds HL in the generated motion [4]. This planner, however, is strictly
related to the kinematic description used to acquire human upper limb data, and a mapping
strategy is needed to generalise the planning outcomes to manipulators with different
kinematic structures. A solution to the latter problem was proposed in [2], where Cartesian
impedance control was used to implement fPCA-based planning with manipulators with
redundant anthropomorphic kinematic architectures - although dissimilar with respect
to the human model used for functional mode extraction. However, these approaches in
the joint space are associated with non-negligible computational time: for example, while
obstacle-free planning can be solved in a closed form, devising a trajectory in the presence
of obstacles requires solving an optimization problem, which can be required up to several
seconds.

4.2 Theorethical Framework

To address both the problem of mapping and the reduction of the computational time
of the aforementioned method, we propose a novel planning algorithm able to compute
Human-Like trajectories of robotic manipulators directly in the Cartesian domain. To this
aim, we built upon the results we presented in [6], where we showed that a geometrical
representation of the human end-effector trajectory in terms of functional elements still
holds in the Cartesian space, confirming the outcomes reported in [3] at the joint level. This
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approach permits to obtain in a negligible time (less than 100 ms) a reference trajectory
with an intrinsic Human-Like behaviour, which can be applied to any kinematic chain used
for describing an artificial manipulator.

4.2.1 Functional Principal Component Analysis

Functional Principal Component Analysis (fPCA) is a statistical method to identify a
geometrical basis of functions whose elements can be combined to reconstruct time series.
In this section, we will provide a brief introduction to the underpinning theory and its
application - without loss of generality - to the description of hand trajectories (i.e. the
trajectories of the end-effector of the upper limb kinematic chain), while referring the
interested reader to [20] for more details. Given a dataset of hand motions, the generic
motion x(t) can be represented as a weighted sum of a set of basis functions S;(t), or
functional Principal Components (fPCs) extracted from the dataset, that is:

Smax

xX(£) =X +So(t)+ Y a0 8(t) @
i=1

where X is the average pose of the hand, S,(t) is the average trajectory across all the
trajectories in the dataset, a; is a vector of weights, s,,,,,. is the number of basis elements,
S;(t) is the i™" basis element and the symbol o represents the Hadamard product (i.e. the
element-wise product).

The first element of the functional basis or first fPC can be computed from the R

motions of the dataset as: . )
H}S?XZ(J Sl(t)xj(t)dt) (5)

=1
subject to
1S (D13 =1 (6)

The other components S;(t) can be computed as:

R 2
max U Si(t)xj(t)dt) @)

i =1

subject to
lIs:(Dll3 =1 (8)

J S;(t)S,(t)dt =0,Vk e {1,...,i —1} 9
0

In this manner, we can identify a basis of functional elements, ordered in terms of the
explained variance that each element accounts for. The details on the results obtained
applying fPCA to a dataset of human upper limb motions [1] can be found in [6].

4.2.2  Planning Algorithm

The fPCs extracted from a dataset that can be considered representative of the most
common upper limb movements can be used to plan trajectories that intrinsically embed
HL. In the following section, we provide a formalization of the planning problem starting
with the no-obstacle case, and then we extend the approach to deal with the presence of
an arbitrary number of fixed obstacles. Of note, fPCA is performed for each Degree of
Freedom (DoF) of the kinematic chain separately. In the following, we report the equations
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for a single DoF of the end effector, while the extension to multiple DoFs (e.g. the six DoFs
describing the pose of the end effector) is trivial.
The reconstruction of the single DoF trajectory can be attained as:

Smax

xX(£) > X +55(6)+ D a;S,(t) (10)

i=1

To find the coefficients x and a; given a set of constraints to be satisfied we can define
an equation system to obtain the desired trajectory to be planned. For example, setting
the initial and final position, velocity and acceleration, the following equation system is

defined:
1 Si(ty) ... Ss(to) x x(to) — So(to)
L oSi(t) oo Ss(tp)| | x(ty)—=So(ty)
0 Sl(to) Ss(to) a | _ x(fo)_SO(to) an
0 L?l(ff) *?S(tf) as x(tf)_ﬁso(tf)
0 §1(to) ‘?s(to) Ay X(to)_go(to)
0 Si(t;) ... Ss(tp)] Las X(tr)—So(ty)
by solving the system we can obtain the desired planned trajectory
5
xX(6) =% +So(t) + Y a;S,(t) (12)

i=1

The strength of this type of framework is that is able to compute in a closed form a
Human-Like trajectory with arbitrary initial and final conditions.

4.3 Future Developments

The closed-form structure of the framework permits to achieve an extremely low compu-
tational time in computing the single trajectory. This can be exploited in different ways
inside the DARKO scenario.

43.1 Collision avoidance

One of the main aspects is collision avoidance. The idea is to find a set of viapoints to
guide the trajectory around the obstacles and plan the trajectory in pieces, guaranteeing
continuity in the junction points. Extensive testing on the planning strategy was performed,
and the interested reader can find them in [5]. The next step in this direction will be to
build a framework able to react in real time to unforeseen obstacles.

4.3.2 Grasping of moving objects

The other aspect is grasping moving objects. The idea is to plan toward a position where
the object will be grasped by the SoftHand. However, to do this, one needs to predict
the future position of the object, and this can be affected by the goodness of the motion
state estimation of the object itself. The low computational time permits us to correct the
trajectory in real time when the estimated grasping pose is updated. We performed some
preliminary tests using an RGB-D camera (fixed on the environment) implementing an
Extended Kalman Filter to estimate the motion state of the object. The results obtained are
promising, and an example of this task can be observed in Figure 1. However, more trials
to test the robustness of the approach have to be performed before implementing it in
the DARKO platform. Moreover, the method should be adapted to the use of the onboard
RGB-D cameras.
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Figure 1: Screenshot from preliminary tests on grasping moving objects.

4.4 Software Package

In the actual state, only the obstacle-free version of the planner is implemented in the
DARKO platform, while the complete version of the Human-Like planning algorithm will
be introduced in the future.

The code regarding the Human-Like planning algorithm can be found in the DARKO
project GitLab repository inside the project called "darko_arm_planning".

darko_arm_planning:

type: git;

url: https://gitsvn-nt.oru.se/darko/software/darko_arm_planning.git
version: master-unipi

The Human-like trajectory planning was implemented in ROS through a ROS service
that takes as input the Cartesian target goal we would like to plan towards, and the current
state of the robot in terms of cartesian pose. The computed trajectory is executed by a
control loop that publishes the trajectory on the Cartesian impedance controller’s topic.

5 Preliminary Work for Soft Manipulator

At the actual state, the DARKO platform has a classical rigid manipulator on top of it.
However, as part of the project, an elastic manipulator will be developed to replace the
Franka Emika Panda and exploit elasticity to enhance efficiency and performance. For this
reason, we did different works regarding the planning and control of compliant kinematic
chains to investigate possible solutions to be implemented on the DARKO platform.

Given that these works are still preliminary research in terms of application inside the
DARKO project, none of them has code explicitly developed for the platform. For the code
publicly available, we refer directly to the correspondent paper cited at the end of each
specific section.

5.1 Optimal Control for Articulated Soft Robots

Soft robots can potentially execute tasks with forceful interactions. However, control
techniques that can effectively exploit the systems’ capabilities are still missing. Optimal
control methods, especially Differential Dynamic Programming (DDP), have emerged as
promising tools for achieving highly dynamic tasks. But most of the work in the literature
tackles the application of DDP to articulated soft robots using numerical differentiation
and only to perform explosive tasks with pure feed-forward control. Further, flexible link
robots are known to be difficult to control and the use of DDP-based algorithms to control
them is not yet addressed.

We propose an efficient DDP-based algorithm for trajectory optimization of articulated
soft robots that can optimize the state trajectory, input torques and stiffness profile. We
provide an efficient method to compute the forward dynamics and the analytical derivatives
of SEA/VSA and flexible link robots. We present a state-feedback controller which uses
the locally optimal feedback policies obtained from DDP. We show through simulations



H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.1

1§ B2

01 ¥ {mm]

0

Figure 2: An underactuated compliant arm is a robot composed of several joints, of which
only a few are actuated. The compliance is conferred to the arm by elastic elements lumped
at the joints (both actuated and unactuated). It is worth noting that there is no limit on the
number of unactuated joints. As an example, the figure depicts a robot with only two actuated
elastic joints (red cylinders) and a generic number of passive ones (white cylinders).

and experiments that the use of feedback is crucial in improving the performance and
stabilization properties in various tasks. We also show that the proposed method can be
used to plan and control flexible link robots effectively. For further information regarding
the work and the code released with the publication, the interested reader can refer to [7].

5.2 lIterative Learning Control for Compliant Underactuated Arms

Operations involving safe interactions in unstructured environments require robots with
adapting behaviours. Compliant manipulators are a promising technology to achieve this
goal. Despite that, some classical control problems such as following a trajectory are still
open.

A typical solution is to compensate the system dynamics with feedback loops. However,
this solution increases the effective robot stiffness and jeopardizes the safety property
provided by the compliant design. On the other hand, purely feedforward approaches
can achieve good tracking performance while preserving the robot intrinsic compliance.
However, a feedforward control framework for robots with passive elastic joints is still
missing.

To overcome these problems we have designed an iterative learning control algorithm
for purely feedforward trajectory tracking for compliant underactuated arms. We tested the
framework using an arm composed of active elastic joints and a generic number of passive
ones connected through rigid links (depicted in Figure 2). We prove the convergence
of the iterative method, also in the presence of uncertainties and bounded disturbances.
Different output functions are analyzed providing conditions, based on the system inertial
properties that ensure the algorithm’s applicability. Additionally, an automatic selection of
the learning gain is proposed. Finally, we extensively validate the theoretical results with
simulations and experiments. For further detail the interested reader can refer to [19].

10
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Figure 3: Schematic representation of the planning framework for minimization of energy
consumption.

5.3 Milnimizing Energy Consumption of Elastic Robots in Repetitive Tasks

Energy consumption is an important issue in robotics. We propose a solution to deal with
the problem of reducing the energy consumption of compliant electro-mechanical systems
while performing periodic tasks. After deriving performance indices to quantify the energy
consumption of a mechanical system, we propose a method to determine both the optimal
compliant actuation parameters and link trajectories to minimize energy consumption. A
schematic framework is represented in Figure 3 We show how this problem can be cast in
a simpler one where the optimization regards only parameters that define the shape of
periodic trajectories to be subsequently determined by using numerical optimization tools.
Indeed, in our framework, the optimal stiffness and spring pre-load can be analytically
obtained as a function of the desired link trajectories.

We perform simulations and experimental validations on a two-link compliant manip-
ulator platform which performs a repetitive pick-and-place task. Our experiments show
that the use of compliant actuators instead of rigid ones and the optimization of their
compliant parameters give rise to an energy saving up to 62% with respect to a rigid
actuation. Moreover, the simultaneous optimization of the compliant parameters and
link trajectories provides an additional energy saving up to 20%. For further detail the
interested reader can refer to [26].

6 Conclusions

In this document, we reported an exhaustive description of the software infrastructure
developed during the project. All the framework is already deployed in the DARKO
platform and it was used to perform the demonstration during Milestone 2 in Stuttgart
at Arena2036. It is worth mentioning that the entire framework has been built with a
modular structure. This will allow in the future to easily insert new parts developed during
the project, minimizing the changes to be made to the existing code.

We have also briefly described some preliminary results regarding the future steps
to be tackled during the project. For these parts, we have provided mainly a theoretical

11
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description, while the dissemination of the software is postponed until they are further
developed from a DARKO perspective and implemented on the platform.
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